
Hao Yu, Zachary P. Sercel, Samir P. Rezgui, Jonathan Farhi, Scott C. Virgil, and Brian M. Stoltz*

Cite this: J. Am. Chem. Soc. 2023, 145, 47, 25533-25537

Scheme 2. (A) Synthesis of Tricyclic Aniline 15; (B) Synthesis of Aminothiophene 12

Scheme 3. Synthesis of Thioimidate 18 via Novel

1. InCl₃, Et₃SiH, MeOH, 23 °C NHTFA 2. NBS, THF, –78-

OMe

Successful assembly of tertiary sulfide and [3.3.1] bicyclic core

Pd(dba)₂ (15 mol %), XPhos (25 mol %), K₂CO₃, dioxane, 100 °C;

then NaOH, CH₂Cl₂/H₂O, 23 °C; then TsCl, DMAP, Py,

71% yield [multi-gram scale] [single purification]

· Full carbon skeleton of aleutianamine established

unstable

TsCI, Py

CH2Cl2, 23 °C

Thiophene Dearomatization

12

15

 $Pd(dba)_2$ (15 mol %) XPhos (25 mol %), K_2CO_3

dioxane, 100 °C

60% yield

10

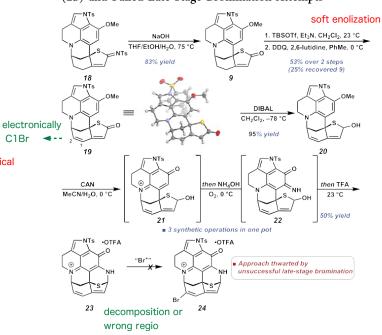
30

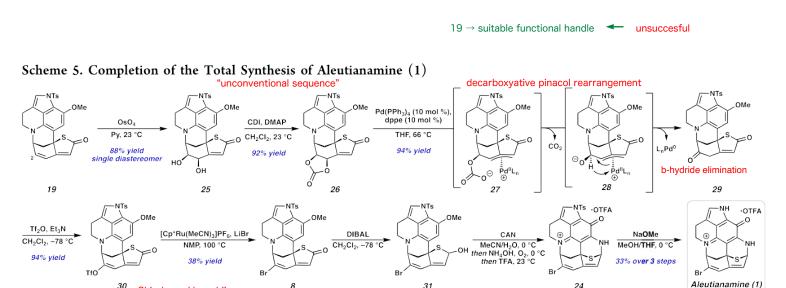
Shirakawa Hayashi's triflate-halogen exchange

reductive amination OMe Yang method

10

18


8


unique thiophene dearomatization Aleutianamine

pyrroloiminoquinone natural product palladium-catalyzed dearomative thiophene functionalization decarboxylative pinacol-type rearrangement of allylic carbonate oxidative amination

nonbiomimetic synthetic approach

Scheme 4. Synthesis of N-Tosyl des-Bromoaleutianamine (23) and Failed Late-Stage Bromination Attempts

31

critical

24